If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-23u-6=0
a = 4; b = -23; c = -6;
Δ = b2-4ac
Δ = -232-4·4·(-6)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-25}{2*4}=\frac{-2}{8} =-1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+25}{2*4}=\frac{48}{8} =6 $
| 3w(w)=72 | | 11x+1=3x-12 | | 7p+2=44 | | 1.5p-4=7 | | (1.018)^x=2 | | 7x-12=x+2+2x-3x= | | 2(5x–3)–3(2x–1)=9 | | 0=4t^2+9t-12 | | 3x-6=18+17x | | 5x29=2x233 | | 2x+6=3x+54 | | 5x29=23332x | | 7x+10=3x-18 | | x^2+5+2x=0 | | −20=p−16 | | 8x+1/8-4x/8=7 | | 2)6x+3)=18-3(16-3x) | | 3(x+1)+1+2x=-2(2x+2)+x | | -7(1-4m)=13(2m=3) | | -5-2r=1+2r | | 3k-4k=-4-2 | | -22x+11=33 | | -2/17/18+x=-4/133/198 | | 6x+(5-5x)21=20 | | -22x+11=11 | | 8n-(5n+7)=8 | | -217/18+x=-4133/198 | | -10+6x=12x+10 | | 7d =6 | | 2(a+8) = | | 2(a+8) =8 | | 4x-6/2=11 |